Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins

Nicholas J. Matzke*1,2, Patrick Shih1

1 Then: CTEG: Center for Theoretical and Evolutionary Genomics
Department of Integrative Biology, University of California, Berkeley
2 Now: Postdoctoral Fellow, National Institute of Mathematical and Biological Science (NIMBioS)
and Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville

Introduction

Chloroplasts and mitochondria descended from bacterial ancestors, but the dating of these primary endosymbiosis events remains very uncertain, despite their importance for our understanding of the evolution of both bacteria and eukaryotes.

All phylogenetic dating in the Proterozoic and before is difficult: Significant debates surround potential fossil calibration points based on the interpretation of the Precambrian microbial fossil record, and strict molecular clock methods cannot be expected to yield accurate dates over such vast timescales because of strong heterogeneity in rates. Even with more sophisticated relaxed-clock analyses, nodes that are distant from fossil calibrations will have a very high uncertainty in dating.

However, endosymbiosis events and gene duplications provide some additional information that has never been exploited in dating; namely, that certain nodes on a gene tree must represent the same events, and thus must have the same or very similar dates, even if the exact date is uncertain.

Method: Exploit common dates of gene duplicates

We devised techniques to exploit this information: cross-calibration, in which node date calibrations are reused across a phylogeny, and cross-bracing, in which node date calibrations are formally linked in a hierarchical Bayesian model.

We apply these methods to proteins with ancient duplications that have remained associated and originated from plastid and mitochondrial endo-symbionts: the α and β subunits of ATP synthase and its relatives, and the elongation factor thermo unstable (EF-Tu).

Acknowledgements: John Hulanicki, Tony Barnosky, Roger Byrnes, David Jablonski, Monte Sommer, Joe Endo, Suhyeon, and Francis Pacific. This work was funded by U.C. Berkeley and NIMBioS travel grants, a Google Summer of Code grant, a Wang Fellowship, a Tien Fellowship, and the NSF grant “Resolves in Time and Space.” Thanks also to the U.C. Museum of Paleontology, members of the White and Hlusko labs, and Charles Marshall, and the CTEG group for useful discussions during seminars.

References & more info

Use QR code or go to: http://phylo.wikidot.com/nicholas-j-matzke

Results


2. The deep nesting of mitochondria and chloroplasts, and extrapolation of Phanerozoic fossil dates, suggests a late date for crown eukaryotes.

Conclusions

Hierarchical Bayesian models are very flexible and allow the incorporation of new prior information which is not exploited in traditional analyses. For this paper, see: Shih & Matzke 2013, PNAS, and writeup by Olga Zhaxybayeva (2013)